
1 23

Memetic Computing

ISSN 1865-9284
Volume 8
Number 3

Memetic Comp. (2016) 8:189-210
DOI 10.1007/s12293-015-0178-6

Non-revisiting genetic algorithm with
adaptive mutation using constant memory

Yang Lou & Shiu Yin Yuen

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Memetic Comp. (2016) 8:189–210
DOI 10.1007/s12293-015-0178-6

REGULAR RESEARCH PAPER

Non-revisiting genetic algorithm with adaptive mutation using
constant memory

Yang Lou1 · Shiu Yin Yuen1

Received: 13 July 2015 / Accepted: 17 December 2015 / Published online: 5 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The continuous non-revisiting genetic algorithm
(cNrGA) uses the entire search history and parameter-less
adaptive mutation to significantly enhance search perfor-
mance. Storing the entire search history is natural and costs
little when the number of fitness evaluations is small or
moderate. However, if the number of evaluations required is
substantial, some memory management is desirable. In this
paper, we propose two pruning mechanisms to keep the mem-
ory used constant. They are least recently used pruning and
random pruning. The basic idea is to prune a unit of memory
when the memory threshold is reached and some new search
information is required to be stored, thus keeping the overall
memory used constant. Meanwhile, both pruning strategies
naturally form parameter-less adaptive mutation operators.
A study is carried out to evaluate the impact on performance
caused by loss of search history information. Experimental
results show that (1) both strategies can maintain the perfor-
mance of cNrGA, up to the empirical limit when 90 % of
the search history is not recorded, (2) cNrGA and its vari-
ants with constant memory outperform the real-coded genetic
algorithm and the standard particle swarm optimization. By
pre-extracting all the current prune-able history information
and storing them into a list, namely, to-prune-list, the over-
head of both pruning strategies becomes small. This suggests
that cNrGA can be extended to use in situations when the
number of fitness evaluations is much larger than before with
no significant effect on statistical performance. This widens
the applicability of cNrGA to include more practical prob-

B Shiu Yin Yuen
kelviny.ee@cityu.edu.hk

Yang Lou
felix.lou@my.cityu.edu.hk

1 Department of Electronic Engineering, City University
of Hong Kong, Hong Kong, China

lems that require larger number of fitness evaluations before
converging to the global optima.

Keywords Non-revisiting genetic algorithms ·
Least recently used pruning · Random pruning ·
Binary space partition tree

1 Introduction

Revisiting evaluated solutions in evolutionary algorithms
(EAs) is wasteful and distorts the true performance of algo-
rithms [1]. Not only the no free lunch (NFL) theorems
declare that all algorithms without revisits have on average
the same performance assuming that the distribution of all
the problems is uniform [1], but also many empirical studies
reveal that duplicate removal improves the performance of
genetic algorithm (GA) significantly [2–7]. Yet only a few
existing algorithms have employed mechanisms to avoid re-
evaluations. One such example is the Tabu search [8], which
uses a set of rules and banned solutions, namely the Tabu
list, recording a portion of the search history, to partially
avoid re-evaluations. Another example is the continuous non-
revisiting genetic algorithm (cNrGA) [9,10], which records
the entire search history. (The subscript c means that the
version of NrGA [7] is designed for continuous variables.)
Thus cNrGA completely avoids re-evaluation of any evalu-
ated solutions. The non-revisiting mechanism has also been
applied to algorithms other than genetic algorithm, such as
non-revisiting simulated annealing (NrSA) [11], and non-
revisiting particle swarm optimization (NrPSO) [12]. Let call
them by a common name non-revisiting stochastic search
(NrSS). The NrSS framework is shown in Fig. 1. It can
be considered as a communication process between the sto-
chastic search method and the stored historical information

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-015-0178-6&domain=pdf

190 Memetic Comp. (2016) 8:189–210

Fig. 1 Framework of non-revisiting stochastic search

[11]. Before the newly generated solutions are evaluated, they
should first pass the revisit-check. More than simple check-
ing and warning of revisit, the non-revisiting scheme offers
search suggestions using history information, e.g. for NrPSO,
the non-revisiting scheme redirects the revisited particle as if
it has collided with the obstacle, and the reactive force leads
the particle to a random yet non-visited position. In NrSA, a
revisit always leads the search to its nearest neighbor in the
discrete domain. For any stochastic search, an archive can be
added for revisit checking. Moreover, the information in the
archive may be more efficiently used to provide a parameter-
less adaptive local search operator [7]. In NrSS, the synergy
of global search, local search and learning historical infor-
mation forms a memetic paradigm [13].

In NrSS, a revisit means it generates a solution which is
exactly the same as one that has been generated and evaluated
in the search history. Recently in the enhanced vine creeping
optimization (EVCO), the authors redefined a revisit as gen-
erating a solution which is bounded by the convex set of a
convergence region, not necessarily exactly the same as any
solution in the history. In EVCO, the non-revisiting scheme
is applied for global exploration [14].

In continuous domain or numerical optimization, it is
much less often than in the discrete domain or combinato-
rial optimization to generate a solution which is identical
to another solution that has been evaluated previously in
the search history. Different strategies incur different prob-
abilities (risk) of revisits. For example, we observe in our
experiments that if the boundary handling method is the so-
called absorbing scheme, i.e., if the values of the parameters
exceeding the boundaries are set to the values at the bound-
aries, the EA suffers from a non-negligible number of revisits
on boundaries. The absorbing scheme is typically employed
by artificial bee colony (ABC) [15,16], and widely employed
by differential evolution (DE) [17–19] and particle swarm
optimization (PSO) [20,21]. In contrast, covariance matrix
adaptation evolution strategy (CMA-ES) [22,23] does not
employ such absorbing scheme and even does not require a
set of known boundaries; as a result, negligible or no revisits
occur in the search process of CMA-ES by nature. In addition,
premature convergence of any stochastic search algorithm
will also generate revisits.

The price of memory is cheaper than ever as new hard-
ware technologies are developing, and will be still cheaper
in the future, as long as the development of hardware tech-
nology continues to follow Moore’s Law [24]. Storing the

search history is natural and costs less and less. Thus even
if an algorithm has no revisits in the continuous domain,
storing the entire search history enables better decisions to
be made [7]. On the other hand, cNrGA records the entire
search history and makes sure that revisits occur due to
crossover. This suggests that a design philosophy such as that
in cNrGA will give better search performance. Rather than
only to prevent revisits, more importantly, cNrGA employs
a framework that derives benefit from revisits. Note that
cNrGA produces more revisits than conventional stochas-
tic search methods. Because cNrGA basically employs only
selection and crossover, the probability of revisits is high.
Revisits are expected and when it happens, cNrGA will per-
form parameter-less adaptive mutation to create new gene in
the current population.

However, cNrGA could not deal with the problems well
when the number of function evaluations is substantial,
because (1) the usage of memory to store the evaluated
solutions may become exceeding, (2) the sub-region for
adaptive mutation may become too small, thus the effec-
tiveness of mutation would be significantly weakened, and
(3) as the accumulated amount of search history becomes
larger, it needs a longer time to check for revisits and per-
form other operations to the memory archive. Thus memory
management for cNrGA may be desirable in some prac-
tical situations. Practically, cNrGA has experimented with
using 40,000 as the maximum number of function evalu-
ations [7,9,10], which makes a compromise between the
performance of the algorithm and the archive size. When
the number of evaluations is 40,000, experimental results in
[10] show that cNrGA outperforms the state of the art CMA-
ES [22,23], which is one of the best performing evolutionary
algorithms to date.

To widen the applicability of cNrGA, especially when it
requires substantial number of evaluations, we propose two
novel pruning mechanisms to maintain the memory used
constant. We set a memory threshold as the maximum stor-
age we want to invest, and when the threshold is reached,
a unit is deleted so that the newly generated solutions can
be stored, keeping the memory constant. The two pruning
mechanisms are (1) pruning the least recently used (LRU)
searching information, and (2) pruning the randomly (R)
selected information. In acronym, the cNrGA/CM/LRU and
cNrGA/CM/R are proposed, where CM is short for constant
memory. Both variants of cNrGA keep constant the over-
all memory to store the evaluated solutions, so that both are
able to deal with situations when the number of function eval-
uations is very large. Employing this useful extension, our
method removes the limit to the maximum number of evalua-
tions in cNrGA. Referring to Fig. 1, we can limit the memory
usage of the non-revisiting scheme by pruning strategies,
such that all the non-revisiting stochastic search methods
could employ a variant using constant memory.

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 191

In contrary to the Tabu list, which stores a portion of the
search history, cNrGA/CM/LRU and cNrGA/CM/R delete a
portion of the entire history. On the one hand, using constant
memory leads to a loss of historical information, and makes
cNrGA not completely non-revisiting; yet on the other hand,
using constant memory does not impose restrictions on the
maximum number of function evaluations, thus, it widens
the applicability of cNrGA to include more practical prob-
lems that require larger number of fitness evaluations before
converging to the global optimum.

If cNrGA concentrates on a particular region, the density
of visiting that region may become large. Thus the sub-region
size of a leaf node at that region may become small. If it
concentrates to search on a few sub-regions, then cNrGA
may miss the exact location of the global optimum. Thus
two other advantages brought by pruning are (1) due to
the limit of partitioning the search space, it offers relatively
larger sub-region size for adaptive mutation, and (2) visit-
ing an archive with constant size is faster and is of constant
speed.

In the extreme case, the cNrGA/CM/LRU and cNrGA/
CM/R may maintain the same amount of history information
as the Tabu search does. However, cNrGA uses the binary
space partitioning (BSP) tree, a more sophisticated data struc-
ture than the Tabu list employed by Tabu search, in organizing
the search archive. The operations of cNrGA/CM/LRU and
cNrGA/CM/R are also different from the Tabu list, specif-
ically, the Tabu search does not support the parameter-less
adaptive mutation, a key operator in cNrGA. Moreover, it is
interesting to note that the pruning operators may be regarded
as novel parameter-less adaptive mutation operators per se. A
preliminary version of this paper has appeared in [25]. In this
paper, (1) the properties of the pruning operators, as novel
parameter-less adaptive mutation operators, are studied in
depth. (2) A comprehensive study on different experimental
settings is done. (3) The computational costs of the proposed
pruning strategies are also examined. (4) Finally, all three
versions of cNrGA are compared with real-coded genetic
algorithm (RGA) [26–28] and the standard particle swarm
optimization (SPSO) 2011 [21].

The rest of the paper is organized as follows. Section 2
introduces the archive organization structure of cNrGA.
Section 3 introduces the two pruning strategies, and the inter-
pretation of the pruning strategies as novel parameter-less
adaptive mutation operator for cNrGA. Section 4 reports the
detailed experimental results, including performance com-
parison and analysis, and Sect. 5 draws the conclusions.

2 Continuous non-revisiting genetic algorithm

cNrGA employs BSP tree to store the entire search history,
and each leaf node stores the search information of one solu-

Fig. 2 Flowchart of the main loop in cNrGA

tion. As the structure of BSP tree is efficient and easy to
implement, it is commonly used as the data structure of
archive [7,9–12,14]. Based on BSP tree, any position in the
entire archive can be easily reached. Moreover, the informa-
tion can be employed for fitness landscape approximation
[29], and parameter control [30]. In cNrGA, the memory
usage of a BSP tree is equal to the number of function eval-
uations. The more history information it accumulates, the
more precise it can approximate the fitness landscape or pre-
dict the performance of using different parameters.

In cNrGA, in each generation a population of candidate
solutions is generated by uniform crossover. Thus each com-
ponent (dimension) of a new generated solution is from either
of its two parents selected at random. The uniform crossover
is prone to generate more and more solutions that have been
evaluated previously as the number of evaluations increases,
since the principle of crossover is to recombine the genes,
rather than to generate new genes. These evaluated solutions
are found by searching in the archive, where the BSP tree
structure makes this process simple and efficient. After the
check of revisit, all revisits will be identified so that they
will not be evaluated. The mutation operator employed in
cNrGA is named one-gene-flip (OGF) mutation [9], which
is simple but effective. The OGF operator works as follows:
if a solution is a revisit, then uniformly mutate on a randomly
selected dimension. Figure 2 shows the flowchart of the main
steps in cNrGA.

A revisited solution will perform adaptive mutation within
its sub-region. A sub-region is a portion of the whole search
space. Within an assigned sub-region, there is one and only
evaluated solution. The sub-region is unique (one-to-one
corresponding) to a stored solution. As the sub-region is a
continuous region with infinite size, the mutant which is
different from the existing solution would definitely be a non-
visited one.

123

Author's personal copy

192 Memetic Comp. (2016) 8:189–210

Fig. 3 The one-to-one correspondence relationship between solutions and their sub-regions

All the evaluated solutions are stored in the BSP tree. Each
leaf node of the tree contains a unique evaluated solution, as
well as its allocated sub-region, while all the non-leaf nodes
are auxiliary for construction of the tree structure. These
nodes are also known as the virtual nodes. Consider leaf
node li in the BSP tree T . It stores in the node li an evalu-
ated solution xi (including the position in the search space,
the fitness value, etc.), and its allocated sub-region hi in S,
where S represents the entire search space, and

∑
i hi = S.

Figure 3 gives an illustration of generating the BSP tree
archive and allocating the sub-regions in a two-dimensional
search space. In Fig. 3a, the search space (in the right coor-
dinate) is partitioned into two sub-regions h1 and h2, by the
generation of the first two solutions x1 and x2. Accordingly,
in the BSP tree on the left of Fig. 3a, the root (denoted by R)
of the BSP tree generates two offspring, nodes A and B to
store the information of solutions and sub-regions. Note that
the dash line in Fig. 3 represents the latest partitioning in the
search space. The latest partitioning cuts the dth dimension
whered = arg max |xi (d) − x j (d)| at thedecision threshold,
which in [7,9] is the mid-point of xi (d) and x j (d), while in
[10], the decision threshold is x j (d) for hi , and xi (d) for h j ,
other than the mid-point, thus the allocated sub-regions over-
lap with each other. The overlapped sub-region for adaptive
mutation is meaningful and significantly improves the per-

formance of cNrGA. The sub-region of h1 is shaded grey
in Fig. 3a–d, and the size of h1 decreases as the number of
solutions increases. In Fig. 3b, a new solution x3 is put in the
sub-region of the original h1. Let re-denote the original h1 by
h′

1, and it is partitioned to two parts: h1 for x1 and h3 for x3,
h1 is a subtraction of h′

1. Accordingly, two offspring nodes
C and D are inserted under node B, though nodes B and C
store the same solution x1, the corresponding sub-regions are
different. Note that node B actually becomes an auxiliary vir-
tual node from now on. In the same way, nodes E and F are
inserted under node A, partitioning the original sub-region
h2 into h2 and h4, as shown in Fig. 3c. Nodes G and H are
inserted under node E , and I and J are inserted under C in
Fig. 3d. Note that all six solutions evaluated so far could be
found in the leaf nodes. Any revisit would be discarded and
replaced by a mutant. For example, if before the generation
of x6, the actually 6th generated solution is a revisit of x1, it
would be discarded without evaluation. The adaptive muta-
tion would be performed within the sub-region of x1, i.e., the
gray shaded area in Fig. 3c, and x6 is eventually generated
in the position shown in Fig. 3d. Note that the sub-region of
x1 is further subtracted after insertion of x6. Because there is
a unique solution within the sub-region of h1, the operation
of mutation ensures that the mutant would be a non-visited
one.

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 193

During the running of cNrGA, the size of the BSP tree
grows as the number of function evaluations increases.
Assume the current number of function evaluations is n, the
number of leaf nodes in the BSP tree is also n. Let denote
the usage of memory to store the search archive so far as n
units (counting only leaf nodes). In cNrGA the maximum
usage of memory is equal to the pre-defined maximum num-
ber of evaluations MaxFEs. If MaxFEs is not substantial,
it is natural and affordable to store the entire search history
using MaxFEs unit of memory. Otherwise effective mem-
ory management is desirable. On the one hand, storing the
entire search history prevents any re-evaluations and saves
the computational resource for exploration or exploitation in
unknown regions. While on the other hand, the more solu-
tions generated and stored in the BSP tree, the smaller the
sub-region allocated for each solution on average. When the
MaxFEs is large, the average size of sub-regions for adap-
tive mutation is quite small, which may lead to insufficient
exploration ability for cNrGA. Therefore the motivation of
proposing a cNrGA variant with constant memory is not only
to save the memory used, but also to maintain a sufficient sub-
region size for adaptive mutation. The size of sub-region is
inversely proportional to the depth of the BSP tree, or the
number of partitions in the search space. Thus if the memory
usage is limited, it would effectively prevent the tree from
becoming too deep. As a result, a sufficiently large mutation
space can be maintained.

Full details on how the BSP tree is constructed and illus-
trative examples can be found in [7,9,10]. Source code of
cNrGA is also available in [31].

3 Memory management strategies

For discrete (combinatorial) optimization problems, NrGA
[7] prunes a sub-tree when all the possible solutions within its
sub-space have been evaluated, and no more searching will be
performed within it. The best solution found within this sub-
space represents the information of the entire sub-space. Thus
all other information could be pruned except the local best
solution. However, in continuous space, it is impossible to
evaluate all the possible solutions within any arbitrarily small
sub-region, and therefore impossible to prune any sub-tree
that contains more than one node. Therefore our strategy is
to keep the usage of memory constant by trying to prune leaf
node one at a time, rather than pruning a sub-tree containing
more than one node. As the entire search history can be found
in the leaf nodes, while the non-leaf nodes are virtual nodes
for organizing the search archive, pruning leaf nodes removes
search information.

The basic idea is that when the algorithm reaches the user
defined memory threshold, it would online prune one old
leaf node and then add back one new leaf node, in general,

in a different location in the search tree as directed by the
cNrGA search mechanism [9,10]. So the memory usage will
be constant.

3.1 Two pruning mechanisms

If the memory threshold is smaller than the maximum num-
ber of function evaluations, when the memory threshold is
reached, some pruning operation is necessary to maintain the
memory usage constant. A new leaf node would be inserted
in the BSP tree after pruning an old one, where new means
that the solution is newly generated, and old means it already
exists in the tree. Which old one is chosen to be pruned can
be determined in different ways. In this paper, we propose
two mechanisms to choose the leaf nodes to prune. They are
the least recently used (LRU) pruning and the random (R)
pruning:

3.1.1 The least recently used (LRU) pruning

In the previous discussion in Fig. 3, we deliberately ignore
one attribute of the tree nodes, the time stamp, denoted by
t , which is newly introduced together with the LRU pruning
strategy introduced here. To record the time sequence of tree
nodes, a time stamp t , recording the time when the node
is inserted into the BSP tree, is attached together with the
solution and stored in the archive. In Fig. 3, the time stamp
for each node is attached. Note that the two siblings have the
same time stamp for they are generated at the same time. Thus
a leaf node li basically contains three attributes {xi , hi , ti },
representing its solution, allocated sub-region and time stamp
respectively. Then it is straightforward to identify the LRU
leaf node. An LRU leaf node means that its time stamp value
is the smallest (oldest) amongst all the current leaf nodes.
In effect, its sub-region is the least recently exploited, or in
other words, the algorithm has not suggested searching in the
sub-region for the longest elapsed time.

Though the basic idea of pruning is clear and simple, there
are two technical problems to be addressed. First, to identify
an LRU node requires one traversal throughout the whole
BSP tree, and the complexity of this process is O(n), this is
a high cost when the number of prune-and-insert operations
is considerable, since for each LRU node, it has to traverse
the whole tree to find it. Therefore a to-prune-list is proposed
to address this problem. A to-prune-list is a list of leaf nodes,
sorted by increasing order of time stamp values. For example,
assuming the BSP tree in Fig. 3d has reached its maxi-
mum memory usage. Then before we prune a tree node and
insert a new one, we need to identify which one is the LRU
node to prune. In this case, a to-prune-list could be formed
by traversal throughout the tree once and sort once, which
is {D (t = 2) , F (t = 3) ,G (t = 4) , H (t = 4) , I (t = 5) ,

J (t = 5)}. The pruning operates as follows: the first element

123

Author's personal copy

194 Memetic Comp. (2016) 8:189–210

would be pruned and deleted from the list. Note that every
node in the to-prune-list must be a leaf node, thus after each
pruning and insertion, it is necessary to check whether the
insertion of the new generated node is operated under any
node in the to-prune-list. If so, the insertion makes that node
a non-leaf node and should be ruled out from the list.

If a to-prune-node has a sibling that is also a leaf node, then
it is easy to perform a two-step pruning, i.e., first, deletes all
the information about the to-prune-node, and second, adjusts
the corresponding information as if the pruned node has never
appeared. Both the to-prune-node and its leaf sibling are
pruned directly. However, if the sibling is not a leaf node but
a sub-tree, then the situation is complicated. As a result, we
encounter the second technical problem, namely, not every
leaf node can be pruned due to the structure of the BSP tree.

If the to-prune-node stores the same solution as its parent,
i.e., the parent is a virtual node of the to-prune-node, then
it is inappropriate to prune it. The virtual node may affect
virtual nodes further up in the tree, and in the worst case,
the ancestor virtual nodes may be traced all the way back
to the root node. If so, the entire BSP tree has to be dras-
tically reorganized, which is time consuming. As a result,
only leaf nodes storing different solutions from their par-
ents can be pruned, i.e., those leaf nodes without virtual
nodes as their parents. For example, let review Fig. 3d and
put it in Fig. 4. It is inappropriate to prune the leaf node
F due to its virtual node A; while D can be pruned. Leaf
nodes {G (t = 4) , H (t = 4) , I (t = 5) , J (t = 5)} are easy
to prune as illustrated. Note that pruning nodes G and H are
equivalent, because they are siblings and have the same time
stamps, and so are pruning I and J . Then we need only keep
the one storing a different solution from their parent. The
nodes feasible to prune are shaded in gray in Fig. 4. From
the viewpoint of search space partitioning shown on the right
figure, the sub-region of a feasible-to-prune node could be
directly merged with another sub-region to form a smoothly
combined sub-region, e.g., to merge the sub-regions of x1 and
x3, the operation is to simply remove the partition cut marked
(2). However, for the sub-region of solution x2, the merg-
ing operation is not simple, no matter whether we remove

Fig. 4 Feasible or infeasible to prune

the partition cut marked (3) or the one marked (1). To save
the computational resource, we simply define this kind of
leaf nodes as infeasible-to-prune. As a result, considering the
two technical problems above, the to-prune-list is shortened
to {D (t = 2) ,G (t = 4) , I (t = 5)} from all able-to-prune
leaf nodes {D,G, H, I, J }.

The to-prune-list is necessary to be re-formed only if
whole list is exhausted. Then the entire tree is traversed again
and a new list of leaf nodes is constructed.

For the sake of both efficiency and parameter-less-ness,
we recommend unlimited length of the to-prune-list in the
implementation. If the memory threshold for the archive is
M units, the length of the to-prune-list is less than M . Note a
unit of usage in an archive not only means a set of attributes
including the solution, allocated sub-region and time stamp,
etc., but also some virtual node(s) which enlarges the actual
usage. However, for each element in the to-prune-list, there
is an address pointing to the corresponding leaf node. The
memory usage of the to-prune-list is negligible, since in case
of a 30-dimension problem and we only store three attributes
{xi , hi , ti } in a tree node, thus 31 real numbers and 1 integer
is stored, including (on average) one virtual node, 62 real
numbers and 2 integers are recorded as one unit of memory
cost by a tree node. In contrast, an element in the to-prune-list
is nothing but an integer.

Note that pruning a node in the BSP tree enlarges the sub-
regions of all related tree nodes. For example in Fig. 4, if
node D is pruned, then nodes I and J share the combined
sub-regions that were shared by nodes D, I and J . As a result,
the pruning mechanism enlarges the sub-regions for adaptive
mutation.

3.1.2 The random (R) pruning

The second pruning mechanism is to prune a randomly
selected leaf node. The idea is to randomly go down the BSP
tree, starting from the root node, and randomly choose the
left or right child to go through, with equal probability, until
it reaches a leaf node. The random pruning has less compu-
tational burden than the LRU pruning, as it only randomly
finds a usable leaf node.

The second technical problem, i.e., not all nodes are able
to prune as mentioned previously is also encountered for
random pruning. The solution is as follows: if the leaf node
reached has no virtual (parent) node, meaning that it is a
feasible-to-prune node, then prune it. Otherwise, restart the
random going down process starting from its sibling until it
finds a feasible leaf node. For example, if any leaf node of
{G, H, I, J, D} is reached as shown in Fig. 4, then it can
be pruned right away. However, if leaf node F is reached,
then the random search goes down the sub-tree with its sib-
ling node E as its head. This process will always terminate

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 195

Input: 1) BSP Tree whose size reaches the memory threshold, 2) To-prune-list , 3) New solution , 4) Pruning Method

If is empty
Traverse the entire and get // is unsorted at this point
If = ‘LRU’
 Sort by the time stamp attached in each node
End

Else
If = ‘LRU’

 := 1 // The first element in the sorted is the LRU node
Else // The pruning method is = ‘R’

 := rand(1, Length of) // Pick a random element from the unsorted
End

 := // Get an element from
Delete from
Re-organize by pruning

 :=
Insert in // Some node in may become non-leaf node after insertion
Check and delete non-leaf nodes in

End

Output: 1) The updated BSP Tree , 2) The updated to-prune-list

Fig. 5 Pseudo code of the two pruning mechanisms

because the BSP tree is constructed such that a virtual parent
node has at least one real child node.

The to-prune-list for R pruning is not essential but is
recommended. It is the same as that for LRU pruning but
without sorting. In LRU to-prune-list, the first element is
always fetched and used, while in R to-prune-list a random
element is picked. Note that when the to-prune-list is applied
to R pruning, then (1) it is not exactly the same as picking
a random leaf node each time, because the recently inserted
nodes are not included in the list; they only avail themselves
for random pruning when the to-prune-list is exhausted and
regenerated, and (2) the second technical problem is natu-
rally avoided, because those unsuitable-to-prune nodes are
skipped and will not be included in the list.

Figure 5 gives the pseudo code of two proposed prun-
ing mechanisms, where we employ the to-prune-list for both
LRU and R pruning.

3.2 Novel parameter-less adaptive mutation operators

Interestingly, the LRU and R pruning strategies could be
interpreted as novel parameter-less adaptive mutation oper-
ators:

Both pruning strategies can be regarded as enlarging the
mutation range (i.e., the sub-region size) for the adaptive
mutation operator, which is a key operator in cNrGA. As
both pruning operators do not introduce any additional para-
meters, the operators are parameter-less. However, they have
different properties:

LRU pruning operator: As LRU pruning deletes the least
recently used leaf nodes, the average sub-region size of a
leaf node increases, but non-uniformly. The sizes of older
nodes are increased more than recent nodes. As the mutation
range is the sub-region size, the strategy is to allow a larger
exploration if a long ago unvisited sub-region is visited again.

R pruning operator: As R pruning deletes leaf nodes ran-
domly, the average sub-region size of a leaf node increases
uniformly. The strategy is thus to increase uniformly on aver-
age the mutation range, while keeping the same mutation
strategies as in the original cNrGA, which is: the leaf nodes
with deeper depths are mutated less, meaning more exploita-
tion, and vice versa.

4 Experimental studies

In this section, we examine the performance of cNrGA/
CM/LRU and cNrGA/CM/R by comparing it to the orig-
inal version of cNrGA [7], as well as RGA [26–28] and
SPSO 2011 [21]. The key issue is to find out if the pruning
mechanisms affect the performance of cNrGA significantly,
and investigate whether pruning brings better mutation for
the optimization. All algorithms are implemented in Matlab.
The experiments are performed on a PC with a 3.40 GHz
quad core CPU with 4.00 GB memory. The source code of
cNrGA/CM/LRU and cNrGA/CM/R can be found in [31].

The rest of the section is organized as follows. The
parameters settings and analysis of experimental results are
presented in Sects. 4.1 and 4.2. Followed by Sect. 4.3, which

123

Author's personal copy

196 Memetic Comp. (2016) 8:189–210

Table 1 Loss of history information in cNrGA/CM/LRU and cNrGA/CM/R

MaxFEs 1E+04 2E+04 3E+04 4E+04 5E+04 6E+04 7E+04 8E+04 9E+04 1E+05

MT 1E+04 1E+04 1E+04 1E+04 1E+04 1E+04 1E+04 1E+04 1E+04 1E+04

Information loss 0 0.50 0.67 0.75 0.80 0.83 0.86 0.88 0.89 0.90

shows both pruning strategies do not affect the effectiveness
of mutation in cNrGA. Both theoretical and experimental
running time are discussed in Sect. 4.4. At the end of this
section, the utility of the to-prune-list is analyzed, empiri-
cally and theoretically.

4.1 Test settings

The full set of 28 benchmark functions in CEC 2013 test suite
[32] is employed. The dimension of the functions is D = 30.
The maximum number of function evaluations (MaxFEs)
is chosen from 10,000 to 100,000. The memory threshold
(MT) is set to be 10,000 units for cNrGA/CM/LRU and
cNrGA/CM/R. Since MT is smaller than MaxFEs, some
portion of history information must be pruned. Table 1 shows
the loss of search information with each setting. For cNrGA,
the setting is MT = MaxFEs so that no search information
is lost.

To evaluate the effect of the pruning fairly, for cNrGA,
cNrGA/CM/LRU, and cNrGA/CM/R, we use the same para-
meters suggested in [10]. Thus the population size is set to
100 and the crossover rate is set to 0.5. In each run, to be
fair, the three algorithms share the identical random process
outcomes before pruning occurs. However, as soon as MT
is reached, cNrGA/CM/LRU and cNrGA/CM/R each prunes
one node from their respective BSP trees, then inserts the
new node representing the new solution into their own trees.
This is repeated for each new solution generated. Hence the
memory used is kept constant. For cNrGA, no pruning is
done and the new solutions are simply inserted into the BSP
tree, making the tree larger and larger. As the composition and
structures of the trees become different as MT is reached, the
three algorithms have different search behaviors after that.

4.2 Results

4.2.1 Significance tests of the three algorithms

The detailed experimental results can be found in Appendix.
The experimental results in Tables 5, 6, 7 and 8 in “Appendix”
show that neither LRU nor R pruning strategy degrades the
overall performance of cNrGA. The performance of cNrGA
with R pruning varies slightly more than cNrGA with LRU
pruning for different problems.

The performance of an algorithm is measured by statistics
from 30 independent runs. Tables 5, 6, 7 and 8 in “Appendix”
show the means, standard deviations, and the p values of
Mann-Whitney U test (with significance level α = 0.05)

obtained by the three variants of cNrGA when the percentage
of information lost varies from 0 to 90 % uniformly (refer to
Table 1). The best mean results amongst the three algorithms
for each problem are shaded in gray.

In total, 280 (28 benchmark functions × 10 different
values of MaxFEs) sets of data are obtained from the exper-
iments, where there are 252 comparisons and 28 for reference
(the set of MaxFEs = MT). Among the 252 compar-
isons, 244 are found to have no significant difference, and
the remaining eight cases are not one-sided.

cNrGA significantly outperforms cNrGA/CM/LRU 2
times (f1 with MaxFEs = 40,000 and 80,000), and sig-
nificantly outperforms cNrGA/CM/R four times (f1 with
MaxFEs = 40,000, f5 with MaxFEs = 80,000, f17 with
MaxFEs = 60,000, and f23 with MaxFEs = 100,000).
These data is in bold and marked † in Tables 5, 6, 7 and
8 in “Appendix”. In contrast, cNrGA/CM/LRU significantly
outperforms cNrGA 2 times (f5 and f28 with MaxFEs =
100,000), while cNrGA/CM/R does not significantly outper-
forms cNrGA in all cases. The data where cNrGA/CM/LRU
significantly outperforms cNrGA is in bold and is marked ‡
in Tables 5, 6, 7 and 8 in “Appendix”. Significant differences
only occur in solving the above five functions (f1, f5, f17,
f23 and f28), while for solving the other 23 functions, f2–
4, f6–16, f18–22, and f24–27, no algorithm is found to be
significantly different from the other two.

4.2.2 Comparison with RGA and SPSO 2011

We also compare these three versions of cNrGA with real-
coded genetic algorithm (RGA) [26–28] and the standard
particle swarm optimization (SPSO) 2011 [21]. RGA is
selected as it is a GA dealing with continuous optimization
and has a set of designer supplied fixed parameters, while
cNrGA and its variants have only two parameters and the
rest of the process is guided by history and the non-revisiting
mechanism. SPSO 2011 is selected as PSO is an influential
paradigm and SPSO 2011 is its latest standard version.

The parameters of SPSO are set to be the same as in [21].
The parameters of RGA are set as follows: BLX-α crossover
[26] with α 0.4 and crossover rate 0.7, mutation rate 0.3,

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 197

tournament selection with tournament size 3. MaxFEs is
set 100,000 for all five algorithms, while the memory usage
threshold is 10,000 for the two versions of cNrGA with con-
stant memory.

Table 9 in “Appendix” shows the mean results and stan-
dard deviation. Table 10 in “Appendix” presents the result
of Mann-Whitney U test (with significance level α = 0.05).
Problems f1–5 are unimodal, f6–20 are basic multimodal,
and f21–28 are composition problems. Both cNrGA and
cNrGA/CM/LRU outperform RGA significantly in 22 cases,
while cNrGA/CM/R outperform RGA significantly in 20
cases. Both cNrGA/CM/LRU and cNrGA/CM/R outperform
SPSO significantly in 12 cases, while cNrGA outperform
SPSO significantly in 13 cases. In contrast, RGA only out-
performs cNrGA/CM/R significantly in two cases, and SPSO
outperforms the three variants of cNrGA significantly nine
cases for each. It can be seen from the tables that all three
versions of cNrGA are substantially better than RGA and
slightly better than SPSO 2011. Qualitatively, all three ver-
sions of cNrGA are superior to SPSO 2011 in the multimodal
and composition problems but are inferior in the unimodal
problems.

4.3 Adaptive mutation

cNrGA employs the adaptive one-gene-flip mutation. On the
one hand, uniform crossover is applied for coarse tuning of
the suggested searching region (exploration oriented), while
mutation is used for fine tuning (exploitation oriented). How-
ever, on the other hand, mutation brings new gene element
to the population, which enlarges the diversity of popula-
tion. Since parameter control is a difficult issue [30,33],
one-gene-flip mutation is designed to be parameter-less. The
mutation step size depends on the size of the corresponding
sub-region. As a result, the step size of mutation adaptively
decreases as the search moves on. The merit of this strategy
is that it automatically moves the search emphasis from ini-
tially exploration prone to later on exploitation prone. Yet
the demerit is, the more solutions it accumulates, the smaller
sub-region would be allocated for each solution on average.
A tiny sub-region is good only when it is exploiting around
the actual global optimum, which is usually unknown.

Fig. 6 An example of sub-region enlargement after pruning

Figure 6 gives an example in two dimensional search
space. There are four solutions in the subspace, dividing the
subspace into four sub-regions in Fig. 6a. Suppose the mem-
ory threshold has been reached, and time stamp tmn is the
smallest overall, implying the sub-region around the solu-
tion xm is rarely visited. Then, applying the LRU pruning,
the search information about xm would be removed, so that
the sub-regions of its neighbors, i.e., xq and xp, would be
enlarged. In Fig. 6a, the gray shaded region in sub-region
for adaptive mutation if any new solution is identical to solu-
tion xq , while in Fig. 6b, the gray region is enlarged by
pruning. Both LRU and R pruning maintain a certain sub-
region size, and the average size for each sub-region is the
size of the search space divided by MT . Note that the aver-
age sub-region size of cNrGA is the size of the search space
divided by MaxFEs. LRU pruning forms a heterogeneous
distribution for the sizes of sub-region, i.e., for the frequently
visited areas, the solutions are probably kept. Thus the sub-
regions are small in these areas. In contrast, for the rarely
visited area, the solutions are prone to be pruned, and thus
the sub-regions are prone to be sparse. In contrast, R pruning
forms a homogeneous distribution for the sub-region size.

To test the effect on the mutation operation caused by LRU
and R pruning, we analyze two indexes, the number of muta-
tion, and the number of effective mutation when running the
algorithms. We define a mutation to be effective if the fit-
ness value of mutant is improved compared with its parent.
In cNrGA, the elitism selection is employed, while effective
mutation is more likely to tournament selection. The concept
of effective mutation is only presented to reflect the effective-
ness of adaptive mutation.

Because the entire history is recorded in cNrGA, while
only a portion of the entire history is kept in cNrGA with
constant memory, it is more likely that one newly generated
solution will be a revisit of the former than in the later. In the
case that the generation of offspring is totally random, then
it is true. However, there are two other factors that need to
be considered. The first factor is selection, which makes the
population concentrates more on certain sub-regions, within
which revisits are prone to happen. The second factor is that
both pruning strategies will tend to keep more recent informa-
tion. For LRU pruning, as its name suggests, all the recently
used data is kept in the BSP tree. In R pruning, because of
the to-prune-list, the recently generated leaf nodes are not
included in the to-prune-list; they only avail themselves for
random pruning when the list is exhausted and regenerated.
Thus the new nodes have no chance to be pruned for some
time. As a result, the current implementation of R pruning
also has more tendency to delete information which is old or
less used.

Considering the above two factors, cNrGA with both types
of prunings preserve the nature of the original cNrGA of con-
centrating the search on recently used sub-regions. Therefore

123

Author's personal copy

198 Memetic Comp. (2016) 8:189–210

Table 2 The ratio of the
number of mutations and the
number of effective mutations

MaxFEs f1 f2 f10 f18 f25 f28

(a) Ratio of the number of mutation

cNrGA vs. cNrGA/CM/LRU 20,000 1.01 0.98 0.97 1.00 1.07 1.01

50,000 0.99 0.99 0.98 0.99 1.03 1.01

80,000 0.97 0.98 0.97 0.97 1.00 0.99

100,000 0.97 0.99 1.02 0.97 0.97 0.96

cNrGA vs. cNrGA/CM/R 20,000 1.00 0.98 0.72 0.97 1.03 1.02

50,000 0.97 0.97 0.93 0.99 1.01 1.00

80,000 0.93 0.97 0.95 0.97 1.00 0.99

100,000 0.95 0.97 0.97 0.94 0.98 0.99

(b) Ratio of the number of effective mutation

cNrGA vs. cNrGA/CM/LRU 20,000 0.94 1.00 1.03 0.96 0.99 1.00

50,000 1.00 0.97 1.03 0.99 1.01 1.01

80,000 0.83 0.99 1.01 0.60 0.95 1.02

100,000 0.51 1.00 1.00 0.45 0.97 1.02

cNrGA vs. cNrGA/CM/R 20,000 0.94 1.01 0.82 1.00 1.00 1.01

50,000 1.03 0.98 0.98 1.03 1.00 0.99

80,000 0.80 1.01 1.02 0.62 0.98 1.06

100,000 0.49 0.99 1.04 0.46 0.97 1.01

the frequency of revisits in cNrGA with pruning would not
be affected drastically. This observation is verified by the
experimental results in Table 2a and b, which confirm that
the revisit frequency is only slightly affected by pruning.

We randomly choose six functions with four different
MaxFEs settings to test the influence on mutation caused
by pruning. In Table 2a, there are the ratios of the number
of mutations. The ratio is calculated by the average num-
ber of mutations of cNrGA divided by the average number
of mutations of either version with pruning. A value greater
than one means that there is greater number of mutation in
cNrGA and vice versa. For example for f1 when MaxFEs is
20,000, after it reaches MT , the average number of mutations
is 3651.17 for cNrGA and 3623.23 for cNrGA/CM/LRU
respectively. Thus the first data cell shown in Table 2a is
3651.17/3623.23 = 1.01.

Note that before and when the MT is reached, the three
algorithms share the identical evolution progress in this
experiment, for the sake of fairness. All the data are aver-
aged from 30 independent runs.

Table 2b shows the ratios of the number of effective muta-
tions, where eight cells (bold region) displaying numbers
distinctly smaller than one can be found. Thus for f1 and
f18, when the MaxFEs are 80,000 and 100,000, the pruning
operations slightly increase the numbers of mutation, which
could be considered as noise, as shown in Table 2a. However,
the numbers of effective mutations are significantly increased
by both LRU and R pruning as shown in Table 2b. Especially,

when MaxFEs is 100,000, the number of effective muta-
tion are doubled, compared with the original cNrGA. Thus
although cNrGA/CM/LRU or cNrGA/CM/R have approxi-
mately the same number of mutations as cNrGA (as shown
in Table 2a), there are twice the number of mutations in both
cNrGA/CM/LRU and cNrGA/CM/R that improve the fitness
in some cases (as shown in those bold in Table 2a). In other
words, the mutation operation in the two pruning versions of
cNrGA is twice as effective in solving some problems, while
in solving other problems, the proportion of effective muta-
tion is not significantly affected. This means the performance
of mutation in the original cNrGA is at least maintained when
pruning strategies are employed. Surprisingly, in a few cases,
the mutation performance is significantly enhanced by the
pruning.

To test the statistical significance of the above obser-
vations, the Mann-Whitney U test (with significance level
α = 0.05) is performed, and the eight data cells which are in
bold in Table 2b, meaning that the effect of in the increase in
the number of effective mutation is statistically significant.
Excluding these eight data, the other elements can be con-
sidered as ratio 1.0 but slightly affected by a small random
noise, since the difference is insignificant.

Although the definition of effective mutation is irrelevant
to the elitism selection in these algorithms, the increase of
the number of effective mutation supports the thesis that both
LRU and R pruning operations can be interpreted as novel
parameter-less adaptive mutation operators.

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 199

4.4 Running time

Clearly both LRU and R pruning strategies reduce the
usage of memory; next let examine computational overhead
reflected by time consumption. cNrGA makes a trade-off
between the performance and time and memory overhead.
A MaxFEs of 40,000 is used in [7,9,10]. In this paper, we
maintain a constant usage of memory in cNrGA/CM/LRU
and cNrGA/CM/R. The overhead of memory is fixed. Thus
the only other concern in cNrGA with constant memory is the
time consumption. Next, we first analyze the theoretical time
consumption of three algorithms, followed by experimental
results.

For all cNrGAs with or without pruning strategy, the time
consumption could be represented as follows,

Ttotal = Tevo + Teval + TBSPtree (1)

where, Tevo is the cost of the genetic evolution, including
initialization, crossover, mutation and selection. is the cost
of evaluations. is equal for all the algorithms if they are
performed with the same MaxFEs. TBSPtree is the time
cost for BSP tree operations, including searching position to
prune (insert), pruning (insertion), etc. Assuming M units of
memory are available (MT = M) and the required number
of evaluations is N (MaxFEs = N). The theoretical time
consumption on the BSP tree for the three algorithms is as
follows.

T (cNrGA)
BSPtree = Texp (N) (2)

T (R)
BSPtree = Texp (M) + Tp&i (N − M) + Tov (3)

T (LRU)
BSPtree = Texp (M) + Tp&i (N − M) + Tov + Tsort (4)

where Texp is the time cost of the BSP tree expansion, Tp&i

is the time cost of pruning and insertion, Tov is the over-
head introduced by pruning. Because both pruning methods
employ the to-prune-list, their costs are the same except for
one term Tsort . It is the cost to keep the to-prune-list of LRU
pruning in order, composed of two parts. The first part is the
sorting of the to-prune-list immediately after its generation,
and the second part is after each pruning and insertion, the
up-prune-list is updated so that some unable-to-prune node
(if any) is excluded from the list. Both parts of Tsort keep the
to-prune-list sorted by their time stamps and make sure that
all nodes in the list are able to be pruned.

Note that for a BSP tree with k leaf nodes, the total number
of tree nodes are 2k − 1, including leaf nodes and non-leaf
(virtual) nodes. Texp and Tp&i are defined as follows, assum-
ing the generated BSP tree is balanced for simplicity:

Texp (k) =
2k−1∑

i=1

(Tvis · log2 i) + (2k − 1) · Tins (5)

Tp&i (k) = 2k · (Tpru + Tins) (6)

whereTvis ,Tins , andTpru are the time costs of visiting, insert-
ing, and pruning a node respectively. The coefficient 2k in
Eq. (6) means that each pruning and inserting is related to two
accompanied offspring, though each time only one solution
is pruned and inserted.

Comparing Eqs. (3) and (4), R pruning is always faster
than LRU pruning.

Table 3 shows the experimental running time of functions
f1, f12, f20 and f28, randomly selected from the 28 problems
in the CEC 2013 test suite. As can be seen from the table,
the original cNrGA runs the fastest. The running time of
cNrGA/CM/LRU and cNrGA/CM/R are between two and
three times greater than that of cNrGA.

Table 3 Comparison of running time excluding the initial 10,000 evaluations of cNrGA, cNrGA/CM/LRU, and cNrGA/CM/R (unit: seconds)

MaxFEs f1 f12 f20 f28

cNrGA cNrGA/
CM/LRU

cNrGA/
CM/R

cNrGA cNrGA/
CM/LRU

cNrGA/
CM/R

cNrGA cNrGA/
CM/LRU

cNrGA/
CM/R

cNrGA cNrGA/
CM/LRU

cNrGA/
CM/R

2E+04 0.51 1.44 1.37 0.51 1.44 1.37 0.47 1.40 1.32 0.50 1.44 1.36

3E+04 1.04 2.75 2.63 1.03 2.78 2.66 0.95 2.74 2.57 1.02 2.76 2.64

4E+04 1.61 4.15 3.96 1.59 4.17 3.98 1.46 4.10 3.89 1.55 4.13 3.93

5E+04 2.21 5.55 5.32 2.15 5.53 5.29 1.98 5.46 5.18 2.10 5.49 5.26

6E+04 2.80 6.96 6.67 2.69 6.87 6.58 2.50 6.84 6.48 2.68 6.89 6.59

7E+04 3.52 8.44 8.11 3.26 8.25 7.89 3.04 8.21 7.80 3.18 8.18 7.84

8E+04 4.07 9.84 9.46 3.78 9.61 9.19 3.58 9.56 9.09 3.79 9.59 9.19

9E+04 4.82 11.31 10.94 4.38 10.99 10.52 4.15 10.94 10.42 4.34 11.02 10.55

1E+05 5.59 12.86 12.35 4.92 12.40 11.85 4.72 12.33 11.74 4.97 12.38 11.87

2E+05 13.73 27.48 26.45 10.36 25.32 24.36 10.10 25.15 24.15 10.64 25.48 24.40

3E+05 23.24 43.21 41.31 16.06 38.83 37.23 15.76 38.52 37.20 16.98 39.31 37.58

123

Author's personal copy

200 Memetic Comp. (2016) 8:189–210

Fig. 7 Ratio of run time vs. maximum number of function evaluations (MaxFEs)

We further examine the algorithm running time extending
the MaxFEs from 100,000 to 300,000, and find that the ratio
of time consumption of cNrGA with constant memory versus
cNrGA is further reduced when the MaxFEs is large. The
detailed ratio of time consumption is plotted in Fig. 7, which
shows (1) the ratio of cNrGA/CM/R vs. cNrGA is always
less than cNrGA/CM/LRU vs. cNrGA. This means that
cNrGA/CM/R is always faster than cNrGA/CM/LRU, (2) the
tendency of the curves is generally decreasing, which means
that both cNrGA/CM/LRU and cNrGA/CM/R are becoming
more time efficient when the required number of evaluations
is increased, and (3) all the ratios are greater than one, and
between two and three, which means cNrGA/CM/LRU and
cNrGA/CM/R increase the computational time two or three
times, but could save nine times memory usage (by pruning
90 % of history information) without reducing the perfor-
mance significantly.

4.5 The to-prune-list

The to-prune-list is proposed to address the technical problem
that to identify one LRU node each time is computation-
ally expensive. It is essential for LRU pruning. It is also
recommended for R pruning, since it is empirically fast
when the to-prune-list is applied for R pruning, though

it changes somewhat the original meaning of R pruning.
The following compares the computational cost of the
pruning strategies with and without employing the to-prune-
lists.

There are in total (N − M) times pruning and inserting
needed, to maintain the memory usage of the BSP tree to
a constant M . Note that it is required to traverse all the
(2M − 1) nodes of the BSP tree to identify the LRU node,
while for R pruning, it only requires log2 (2M − 1) to reach
a leaf node randomly. Assuming all leaf nodes can be pruned,
the complexities of searching random and LRU leaf nodes
are given in Eqs. (7) and (8). Let τ be the number of times of
(re-)generating to-prune-lists, then the complexities of using
the to-prune-lists is given in Eqs. (9) and (10).

Crnd = (N − M) · log2 (2M − 1) (7)

Clru = (N − M) · (2M − 1) (8)

Ctpl
rnd =

τ∑

i=1

(2M − 1) = τ · (2M − 1) (9)

Ctpl
lru =

τ∑

i=1

(2M − 1 + Csort (Li)) = τ · (2M − 1)

+
τ∑

i=1

Csort (Li) (10)

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 201

Fig. 8 Boxplots of experimental values of τ when the MaxFEs is a 20,000, b 50,000, c 80,000, and d 100,000 respectively

where Crnd is the complexity of randomly search leaf nodes
on the BSP tree with M leaf nodes (2M − 1 nodes in total)
one after the other. Clru is the complexity of searching LRU
nodes one after the other. The superscript tpl in Eqs. (9) and
(10) means using the to-prune-list. Csort (Li) is the com-
plexity of sorting a to-prune-list of length Li , then Csort

= O(Li · log2 Li) [34,35]. The exact complexity Csort

depends on the sorting method employed.
Because τ and Li are unknown in Eqs. (9) and (10),

we study them experimentally. Figure 8 shows four box-
plots, from up to down, when the MaxFEs are (a) 20,000,
(b) 50,000, (c) 80,000, and (d) 100,000 respectively. The blue
box denotes that the central 50 % data lies within this section;
the red bar is the median value of all 30 datasets; the upper and
lower black bars are the greatest and the least values, exclud-
ing outliers; and finally the red pluses represent the outliers.
τ̄ , the average number of (re-)generating the to-prune-list,
and L̄ , the average length of the to-prune-lists, for different
values of MaxFEs is shown in Table 4, accompanied by
the standard deviations of τ and Li of 30 independent runs.

In the case that the memory threshold is M = 10, 000, and
the maximum number of evaluations MaxFEs = 100, 000,
τ̄ = 25.39 and L̄ = 3963.31. Approximately, let substi-
tute τ = τ̄ , and Li = L̄ into Eqs. (9) and (10). According
to Table 4, both the standard deviations of τ and Li are
relatively small, thus the sorting complexity can be approx-
imated as Eq. (11). Practically in implementation, we use
the Matlab function sort with default mode, i.e., ‘ascend’ to
sort the to-prune-list. The algorithm employed in sort func-
tion is quicksort, and thus its time complexity is Csort =

Table 4 The average number and standard deviation of the times of
(re-)generating the to-prune-list, and the average length and standard
deviation of the to-prune-lists, when the MaxFEs is 20,000, 50,000,
80,000, and 100,000 respectively

MaxFEs 2E+04 5E+04 8E+04 1E+05

τ̄ 2.91 10.50 19.24 25.39

SD 0.15 0.41 0.81 1.18

L̄ 4852.97 4335.71 4082.26 3963.31

SD 94.21 111.22 140.31 165.76

O
(
n · log2 n

) ≈ 1.39 · n · log2n, where n is the number of
numerical elements to be sorted [34,35].

τ∑

i=1

Csort (Li) = 1.39 ·
τ∑

i=1

Li · log2 Li ≈ 1.39 · τ̄ · L̄ · log2 L̄

(11)

Using Eqs. (7) and (9), we obtain Crnd = 1.29 × 106 and
Ctpl
rnd = 0.51×106. The usage of the to-prune-list on average

reduces the time complexity by approximately twice in R
pruning. As for the LRU pruning, using Eqs. (8) and (10),
Clru = 1.80 × 109 and Ctpl

lru = 2.18 × 106. The reduction of
time complexity is approximately 800 times.

5 Conclusions

The continuous non-revisiting genetic algorithm (cNrGA)
employs the binary space partitioning (BSP) tree to store

123

Author's personal copy

202 Memetic Comp. (2016) 8:189–210

the entire search history, so that the parameter-less adaptive
mutation can be performed via the partitioned search space.
By keeping the entire search history, significant search per-
formance gain has been observed by using the search history
to advise the search.

Though it is reasonable and indeed natural to store the
entire search history when the application involves expensive
fitness function evaluations, it is interesting if one can extend
the applicability of cNrGA when the number of evaluations
is larger.

In this paper, we propose two pruning strategies which
keep the memory usage in cNrGA constant when it reaches a
predefined memory threshold. Thus in principle, cNrGA can
be used for all kinds of search problems, especially for those
involving large number of function evaluations. The pruning
strategies are least recently used pruning and random prun-
ing. Interestingly, the two pruning strategies can be regarded
as novel parameter-less adaptive mutation operators, which
modify the search strategies of cNrGA fundamentally. Fur-
ther, the to-prune-list is proposed which makes the pruning
more efficient.

The experimental results reveal that these pruning strate-
gies do not degrade the performance of cNrGA. Also they do
not significantly reduce the number of mutation that is impor-
tant for obtaining good solutions. With up to 90 % pruning,
the performance of the two cNrGA variants and the original
cNrGA does not show any significant difference. They also
show that the pruning strategies may be legitimately con-
sidered as novel parameter-less adaptive mutation operators,
and somewhat surprisingly, they even lead to better muta-

tion conditions for some problems we tested. Moreover, the
computational overhead of the proposed pruning strategies
is reasonably small when the to-prune-list is used.

A neck to neck comparison of the three versions of cNrGA
is also made with real-coded genetic algorithm (RGA) and
standard particle swarm optimization (SPSO) 2011. Consid-
ering the number of significantly superior and inferior cases,
it is found that all three versions of cNrGA are substantially
better than RGA and slightly better than SPSO 2011. Qual-
itatively, all three versions of cNrGA are superior to SPSO
2011 in the multimodal and composition problems but are
inferior in the unimodal problems.

From the above results, one may conclude that the pro-
posed pruning mechanisms for memory management widens
the applicability of cNrGA to include more practical prob-
lems that require larger number of fitness evaluations before
converging to the global optimum, and the pruning strate-
gies furnish novel, effective parameter-less adaptive mutation
strategies.

Acknowledgments The work described in this paper was supported
by a grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CityU 125313). We thank
Dr. Chi Kin Chow for suggesting that pruning can be done randomly
on the discrete version of NrGA.

Appendix

See Tables 5, 6, 7 and 8.

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 203

Table 5 Performance
comparison of cNrGA,
cNrGA/CM/LRU and
cNrGA/CM/R. The best mean
fitness values over three
algorithms are shaded in grey.
† means cNrGA is significantly
superior to its variant with
constant memory, while ‡ means
cNrGA is significantly inferior

f1 f2 f3 f4 f5 f6 f7

1E+04

cNrGA -1229.92 6.36E+07 1.16E+10 1.09E+05 -861.13 -790.60 -694.73
SD 56.63 2.26E+07 5.32E+09 1.57E+04 53.41 33.62 22.85

cNrGA/CM/LRU -1229.92 6.36E+07 1.16E+10 1.09E+05 -861.13 -790.60 -694.73
SD 56.63 2.26E+07 5.32E+09 1.57E+04 53.41 33.62 22.85

cNrGA/CM/R -1229.92 6.36E+07 1.16E+10 1.09E+05 -861.13 -790.60 -694.73
SD 56.63 2.26E+07 5.32E+09 1.57E+04 53.41 33.62 22.85

2E+04

cNrGA -1392.74 3.91E+07 3.82E+09 9.70E+04 -988.35 -826.21 -715.25
SD 2.90 1.76E+07 1.78E+09 1.44E+04 7.93 26.92 15.90

cNrGA/CM/LRU -1390.97 3.92E+07 3.79E+09 9.70E+04 -990.19 -827.67 -716.51
SD 4.34 1.76E+07 1.98E+09 1.44E+04 3.79 27.48 17.92

p-value (0.0963) (0.9823) (0.9234) (1.0000) (0.9000) (0.8073) (0.8073)
cNrGA/CM/R -1389.63 3.89E+07 3.86E+09 9.69E+04 -989.23 -825.86 -715.65

SD 12.58 1.70E+07 1.96E+09 1.44E+04 6.22 27.58 17.87
p-value (0.3403) (0.9470) (0.7283) (1.0000) (0.8883) (1.0000) (0.9470)

3E+04

cNrGA -1398.04 2.78E+07 2.84E+09 9.14E+04 -998.30 -826.30 -718.62
SD 1.67 1.21E+07 2.10E+09 1.24E+04 0.75 21.89 15.85

cNrGA/CM/LRU -1397.60 2.79E+07 2.94E+09 9.05E+04 -998.25 -825.56 -719.73
SD 3.50 1.31E+07 2.42E+09 1.25E+04 0.80 20.60 13.28

p-value (0.7283) (0.9352) (0.9587) (0.6734) (0.7845) (0.9941) (0.8766)
cNrGA/CM/R -1397.98 2.77E+07 2.96E+09 9.01E+04 -997.81 -825.78 -717.44

SD 1.72 1.19E+07 2.38E+09 1.59E+04 1.83 21.24 15.13
p-value (0.9470) (0.9000) (1.0000) (0.5010) (0.4204) (0.8418) (0.8187)

4E+04

cNrGA -1399.66 3.09E+07 1.69E+09 8.30E+04 -999.24 -841.65 -720.23
SD 0.42 1.05E+07 1.39E+09 1.14E+04 0.61 25.73 15.87

cNrGA/CM/LRU -1399.38 3.05E+07 1.81E+09 8.18E+04 -999.13 -839.76 -719.13
SD 0.70 1.04E+07 1.58E+09 1.19E+04 0.64 26.34 15.70

p-value (0.0026)† (0.9587) (0.7394) (0.6897) (0.4376) (0.7845) (0.6952)
cNrGA/CM/R -1399.31 3.12E+07 1.79E+09 8.11E+04 -998.94 -839.56 -720.54

SD 1.22 1.05E+07 1.71E+09 1.23E+04 1.72 26.19 13.35
p-value (0.0040)† (0.7845) (0.8418) (0.5394) (0.8650) (0.7845) (0.9470)

5E+04

cNrGA -1399.77 2.69E+07 1.62E+09 7.05E+04 -999.54 -838.46 -721.80
SD 0.24 1.33E+07 1.25E+09 1.15E+04 0.89 22.76 16.96

cNrGA/CM/LRU -1399.84 2.76E+07 1.75E+09 7.14E+04 -999.67 -837.67 -719.89
SD 0.15 1.32E+07 1.32E+09 1.10E+04 0.21 23.83 17.80

p-value (0.2170) (0.8303) (0.7506) (0.7061) (0.8303) (0.9234) (0.6520)
cNrGA/CM/R -1399.77 2.68E+07 1.62E+09 7.06E+04 -999.75 -839.00 -722.18

SD 0.24 1.24E+07 1.08E+09 1.09E+04 0.24 22.67 16.42
p-value (0.9470) (0.9823) (0.7506) (0.9352) (0.0877) (0.8303) (0.9941)

6E+04

cNrGA -1399.68 2.12E+07 1.03E+09 6.67E+04 -999.87 -848.01 -724.35
SD 1.43 1.05E+07 9.02E+08 1.11E+04 0.08 28.98 18.56

cNrGA/CM/LRU -1399.93 2.18E+07 1.27E+09 6.36E+04 -999.79 -847.56 -723.88
SD 0.07 1.04E+07 1.17E+09 1.36E+04 0.24 28.67 17.98

p-value (0.9587) (0.7283) (0.8418) (0.4419) (0.5592) (0.9941) (0.9705)
cNrGA/CM/R -1399.92 2.18E+07 1.05E+09 6.56E+04 -999.80 -846.64 -723.76

SD 0.05 1.02E+07 7.19E+08 1.10E+04 0.15 30.15 17.71
p-value (0.0993) (0.7506) (0.6843) (0.7282) (0.1537) (0.9000) (0.9352)

7E+04

cNrGA -1399.84 2.02E+07 1.31E+09 5.85E+04 -999.69 -841.75 -725.25
SD 0.61 9.96E+06 1.34E+09 1.32E+04 0.89 24.98 13.53

cNrGA/CM/LRU -1399.93 2.03E+07 1.18E+09 6.01E+04 -999.73 -840.89 -726.63
SD 0.10 1.06E+07 1.16E+09 1.32E+04 0.82 24.55 14.30

p-value (0.5692) (0.9352) (0.7618) (0.5493) (0.3403) (0.9352) (0.8187)
cNrGA/CM/R -1399.47 2.00E+07 1.23E+09 5.74E+04 -999.79 -841.31 -725.18

SD 1.48 8.91E+06 1.19E+09 1.17E+04 0.33 25.53 14.50
p-value (0.2116) (0.8766) (0.8883) (0.6789) (0.0537) (0.9117) (0.9000)

8E+04

cNrGA -1399.98 2.01E+07 1.07E+09 4.84E+04 -999.93 -852.23 -722.53
SD 0.05 1.07E+07 1.34E+09 1.00E+04 0.17 25.14 13.73

cNrGA/CM/LRU -1399.70 2.01E+07 1.18E+09 4.77E+04 -999.89 -852.45 -723.17
SD 1.34 1.04E+07 1.37E+09 9.34E+03 0.24 24.72 14.65

p-value (0.0051)† (0.9352) (0.9705) (0.8130) (0.2398) (0.9705) (0.7394)
cNrGA/CM/R -1399.94 2.04E+07 1.13E+09 4.98E+04 -999.82 -851.94 -722.94

SD 0.16 1.11E+07 1.22E+09 9.17E+03 0.38 24.63 13.41
p-value (0.0594) (0.9352) (0.8766) (0.6100) (0.0351)† (0.8650) (0.9117)

9E+04 cNrGA -1399.92 1.88E+07 1.32E+09 4.67E+04 -999.95 -850.25 -724.80
SD 0.26 8.51E+06 1.88E+09 1.09E+04 0.06 25.25 18.06

cNrGA/CM/LRU -1399.61 1.95E+07 1.18E+09 4.88E+04 -999.93 -852.52 -726.51
SD 1.36 8.98E+06 1.43E+09 9.68E+03 0.11 25.13 16.21

p-value (0.8883) (0.7394) (0.6843) (0.3366) (0.2458) (0.6735) (0.8303)
cNrGA/CM/R -1399.88 1.89E+07 1.29E+09 4.85E+04 -998.82 -850.75 -724.12

SD 0.37 8.24E+06 1.79E+09 8.16E+03 4.05 25.07 17.33
p-value (0.7506) (0.8187) (0.9823) (0.5542) (0.0877) (0.9823) (0.8073)

1E+05

cNrGA -1399.87 2.00E+07 8.82E+08 4.41E+04 -999.83 -849.60 -724.57
SD 0.25 7.57E+06 8.12E+08 1.04E+04 0.55 23.95 12.68

cNrGA/CM/LRU -1399.83 2.00E+07 1.07E+09 4.25E+04 -999.85 -848.81 -724.38
SD 0.69 7.46E+06 8.30E+08 7.89E+03 0.38 24.85 13.18

p-value (0.2838) (0.9941) (0.3183) (0.7450) (0.0122)‡ (0.7845) (0.9117)
cNrGA/CM/R -1399.95 2.02E+07 1.13E+09 4.07E+04 -999.93 -849.51 -724.10

SD 0.10 7.37E+06 1.01E+09 9.00E+03 0.17 23.82 13.08
p-value (0.8073) (0.9000) (0.1809) (0.2707) (0.2062) (0.9000) (0.9234)

123

Author's personal copy

204 Memetic Comp. (2016) 8:189–210

Table 6 Performance
comparison of cNrGA,
cNrGA/CM/LRU and
cNrGA/CM/R. The best mean
fitness values over three
algorithms are shaded in grey.
† means cNrGA is significantly
superior to its variant with
constant memory, while ‡ means
cNrGA is significantly inferior

f8 f9 f10 f11 f12 f13 f14

1E+04

cNrGA -678.90 -559.07 -341.50 -362.79 -98.20 5.16 154.45
SD 0.06 2.89 53.95 8.30 30.33 18.03 75.02

cNrGA/CM/LRU -678.90 -559.07 -341.50 -362.79 -98.20 5.16 154.45
SD 0.06 2.89 53.95 8.30 30.33 18.03 75.02

cNrGA/CM/R -678.90 -559.07 -341.50 -362.79 -98.20 5.16 154.45
SD 0.06 2.89 53.95 8.30 30.33 18.03 75.02

2E+04

cNrGA -678.92 -566.76 -423.03 -391.53 -206.94 -44.14 -46.37
SD 0.06 5.36 34.02 2.48 28.85 35.21 32.23

cNrGA/CM/LRU -678.92 -566.60 -420.75 -392.25 -209.73 -48.27 -52.74
SD 0.06 5.82 37.36 2.20 22.35 37.33 18.35

p-value (1.0000) (0.9470) (0.8418) (0.3555) (0.9587) (0.7062) (0.5493)
cNrGA/CM/R -678.92 -566.57 -423.01 -391.46 -213.19 -46.89 -47.87

SD 0.06 6.48 33.45 2.18 18.13 36.39 27.41
p-value (1.0000) (0.9352) (0.9470) (0.7172) (0.4643) (0.6048) (0.8883)

3E+04

cNrGA -678.96 -570.21 -455.25 -396.67 -238.68 -64.41 -78.05
SD 0.05 3.81 20.15 1.68 15.21 28.89 8.71

cNrGA/CM/LRU -678.96 -569.27 -455.32 -396.43 -239.43 -68.03 -74.87
SD 0.05 4.26 19.22 1.17 12.53 25.44 23.60

p-value (1.0000) (0.4290) (0.9352) (0.3711) (0.8073) (0.6100) (0.8766)
cNrGA/CM/R -678.96 -570.21 -456.11 -396.61 -238.72 -65.00 -75.28

SD 0.05 4.41 18.78 1.34 14.37 25.22 21.52
p-value (0.9000) (0.7394) (0.9941) (0.8534) (0.9000) (0.9941) (0.6414)

4E+04

cNrGA -678.98 -570.13 -469.63 -398.03 -248.26 -87.35 -88.94
SD 0.06 3.80 13.09 1.51 12.79 22.83 7.01

cNrGA/CM/LRU -678.98 -570.41 -468.72 -397.75 -247.60 -82.63 -88.87
SD 0.06 4.04 12.32 1.73 13.86 29.07 3.85

p-value (0.9234) (0.9823) (0.6735) (0.4825) (0.9352) (0.5895) (0.1907)
cNrGA/CM/R -678.98 -570.60 -469.37 -397.91 -245.55 -84.01 -88.73

SD 0.06 3.73 13.09 1.48 11.03 24.70 6.31
p-value (0.9234) (0.6952) (0.9470) (0.4204) (0.3329) (0.7506) (0.6735)

5E+04

cNrGA -678.98 -571.24 -477.61 -398.65 -248.22 -70.76 -90.75
SD 0.06 4.04 11.45 1.09 11.45 28.40 6.21

cNrGA/CM/LRU -678.98 -570.48 -475.72 -398.64 -247.35 -74.54 -91.66
SD 0.06 3.45 13.05 1.21 12.77 32.27 5.66

p-value (0.9293) (0.5201) (0.3112) (0.7394) (0.9234) (0.8534) (0.5793)
cNrGA/CM/R -678.98 -570.97 -476.71 -398.45 -246.50 -75.12 -91.32

SD 0.06 3.59 12.60 1.14 11.54 30.39 5.06
p-value (0.9293) (0.7506) (0.7618) (0.3711) (0.5201) (0.4464) (0.9705)

6E+04

cNrGA -678.98 -570.88 -485.98 -398.86 -246.76 -81.04 -93.99
SD 0.05 3.60 5.28 1.20 12.35 35.42 4.87

cNrGA/CM/LRU -678.98 -571.19 -486.29 -398.64 -246.21 -85.39 -93.58
SD 0.05 4.01 5.45 1.16 12.40 30.08 3.95

p-value (0.9764) (0.9234) (0.6952) (0.4204) (0.8418) (0.5793) (0.3183)
cNrGA/CM/R -678.98 -570.91 -486.09 -398.64 -245.86 -83.40 -93.36

SD 0.05 3.81 5.31 1.21 13.65 29.32 3.42
p-value (0.8824) (0.9470) (0.7283) (0.2905) (0.8303) (0.9000) (0.1494)

7E+04

cNrGA -678.97 -571.54 -487.84 -398.62 -249.11 -75.40 -94.76
SD 0.04 3.70 7.15 1.42 12.86 33.84 4.39

cNrGA/CM/LRU -678.97 -570.72 -487.92 -398.27 -248.36 -77.13 -94.67
SD 0.05 2.73 6.31 1.85 12.75 34.08 5.43

p-value (0.8475) (0.2973) (0.9117) (0.3711) (0.7618) (0.8303) (0.5106)
cNrGA/CM/R -678.98 -572.37 -487.69 -398.71 -248.46 -76.84 -95.44

SD 0.05 2.72 6.86 1.70 13.06 32.47 3.16
p-value (0.9058) (0.3555) (0.8650) (0.9941) (0.9000) (0.7845) (0.6952)

8E+04

cNrGA -678.98 -570.76 -490.50 -398.67 -249.99 -86.76 -95.94
SD 0.05 3.96 6.27 1.19 12.18 28.76 3.76

cNrGA/CM/LRU -678.98 -571.28 -489.81 -399.11 -249.19 -84.73 -91.81
SD 0.04 2.92 7.26 1.06 13.69 28.71 22.45

p-value (0.7116) (0.6100) (0.9352) (0.2340) (0.8418) (0.7731) (0.9470)
cNrGA/CM/R -678.98 -570.72 -490.69 -398.85 -249.89 -85.83 -95.38

SD 0.05 3.77 4.18 1.08 12.64 29.39 3.07
p-value (0.7958) (0.8650) (0.5493) (0.9941) (0.9941) (0.8073) (0.1373)

9E+04

cNrGA -679.01 -570.92 -491.95 -398.86 -246.95 -86.19 -95.31
SD 0.06 3.67 5.01 1.48 14.17 29.99 8.95

cNrGA/CM/LRU -679.01 -570.06 -492.00 -398.98 -247.67 -88.44 -95.46
SD 0.06 4.43 5.03 1.16 13.14 28.78 4.24

p-value (0.8187) (0.6309) (0.8650) (0.3953) (0.9941) (0.6952) (0.5298)
cNrGA/CM/R -679.00 -570.58 -492.57 -398.99 -247.52 -85.60 -97.32

SD 0.05 3.47 3.97 1.28 13.28 34.03 3.10
p-value (0.4687) (0.8766) (0.6735) (0.7618) (0.8883) (0.9000) (0.0905)

1E+05

cNrGA -679.03 -571.93 -494.39 -398.40 -245.72 -87.57 -95.68
SD 0.06 3.17 2.30 1.55 14.81 21.27 4.61

cNrGA/CM/LRU -679.02 -570.88 -494.49 -398.77 -245.41 -91.53 -96.62
SD 0.07 3.93 2.00 1.31 15.56 19.68 2.35

p-value (0.5492) (0.3329) (0.9941) (0.4918) (0.9705) (0.3953) (0.9117)
cNrGA/CM/R -679.02 -571.39 -494.16 -398.60 -246.93 -88.81 -97.64

SD 0.07 3.03 2.51 1.37 13.83 21.94 1.77
p-value (0.4778) (0.6309) (0.7172) (0.9941) (0.7394) (0.8303) (0.4204)

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 205

Table 7 Performance
comparison of cNrGA,
cNrGA/CM/LRU and
cNrGA/CM/R. The best mean
fitness values over three
algorithms are shaded in grey.
† means cNrGA is significantly
superior to its variant with
constant memory, while ‡ means
cNrGA is significantly inferior

f15 f16 f17 f18 f19 f20 f21

1E+04

cNrGA 8111.55 203.51 388.92 678.75 524.32 614.14 1323.28
SD 381.97 0.43 11.82 19.60 18.08 0.71 133.10

cNrGA/CM/LRU 8111.55 203.51 388.92 678.75 524.32 614.14 1323.28
SD 381.97 0.43 11.82 19.60 18.08 0.71 133.10

cNrGA/CM/R 8111.55 203.51 388.92 678.75 524.32 614.14 1323.28
SD 381.97 0.43 11.82 19.60 18.08 0.71 133.10

2E+04

cNrGA 7905.97 203.20 344.03 647.58 503.80 612.98 1054.17
SD 253.17 0.32 2.26 34.97 0.92 0.29 73.37

cNrGA/CM/LRU 7905.97 203.20 343.98 640.73 503.89 612.95 1049.14
SD 253.17 0.32 2.87 38.64 0.77 0.27 73.79

p-value (1.0000) (1.0000) (0.7283) (0.5154) (0.3112) (0.5493) (0.7394)
cNrGA/CM/R 7893.34 203.20 344.42 647.74 503.92 612.99 1056.95

SD 266.24 0.32 2.46 35.64 0.74 0.30 72.00
p-value (0.8708) (1.0000) (0.5997) (0.9000) (0.3953) (0.9587) (0.7731)

3E+04

cNrGA 7697.36 203.08 335.88 622.45 502.57 612.57 1004.11
SD 310.14 0.44 1.23 39.83 0.81 0.38 76.23

cNrGA/CM/LRU 7760.14 203.08 336.31 618.90 502.58 612.65 1005.68
SD 277.93 0.44 1.53 41.14 0.73 0.37 75.12

p-value (0.5248) (1.0000) (0.3871) (0.7618) (0.8650) (0.4508) (0.8187)
cNrGA/CM/R 7703.18 203.09 336.39 625.75 502.71 612.61 1007.28

SD 299.80 0.44 1.37 40.94 0.69 0.41 75.29
p-value (0.9352) (0.9764) (0.2009) (0.6627) (0.1715) (0.5592) (0.5895)

4E+04

cNrGA 7520.08 203.04 333.73 586.39 502.00 612.13 1003.55
SD 584.01 0.38 1.03 42.81 0.45 0.65 77.77

cNrGA/CM/LRU 7423.63 203.04 333.97 585.00 501.97 612.15 1007.84
SD 661.63 0.37 1.41 32.83 0.50 0.68 75.23

p-value (0.4507) (0.9234) (0.8073) (0.8303) (0.9587) (0.9058) (0.7062)
cNrGA/CM/R 7467.35 203.03 333.96 592.97 501.99 612.17 1004.00

SD 651.80 0.36 0.93 37.04 0.44 0.61 77.07
p-value (0.4076) (0.9823) (0.2838) (0.3042) (1.0000) (0.7958) (0.7618)

5E+04

cNrGA 7510.52 202.83 332.75 557.72 501.79 611.81 1009.90
SD 376.54 0.35 0.70 27.87 0.63 0.64 86.29

cNrGA/CM/LRU 7477.33 202.84 333.01 569.72 501.78 611.84 1008.94
SD 419.73 0.34 0.71 37.63 0.44 0.54 87.13

p-value (0.9176) (0.9941) (0.2707) (0.4643) (0.5997) (0.7845) (0.6100)
cNrGA/CM/R 7491.56 202.88 333.01 562.46 501.85 611.72 1009.65

SD 418.68 0.32 1.11 30.09 0.45 0.67 86.58
p-value (0.9705) (0.5641) (0.6204) (0.4733) (0.3478) (0.6843) (0.7506)

6E+04

cNrGA 7027.74 202.93 332.20 551.92 501.78 611.81 975.25
SD 1273.96 0.31 0.62 32.62 0.50 0.63 67.50

cNrGA/CM/LRU 6870.52 202.95 332.42 564.44 501.65 611.73 979.44
SD 1267.20 0.33 0.64 34.22 0.43 0.58 66.81

p-value (0.4463) (0.9646) (0.1154) (0.1224) (0.4643) (0.6843) (0.7731)
cNrGA/CM/R 6912.04 202.93 332.63 567.04 501.69 611.76 977.74

SD 1266.14 0.31 0.94 35.81 0.53 0.56 65.59
p-value (0.6099) (0.8766) (0.0315)† (0.1055) (0.3632) (0.7731) (0.7394)

7E+04

cNrGA 6931.76 202.83 332.09 543.22 501.44 611.52 992.47
SD 1130.15 0.29 1.28 21.07 0.37 0.62 75.51

cNrGA/CM/LRU 7075.70 202.80 331.96 549.34 501.55 611.75 993.96
SD 944.06 0.31 0.81 25.39 0.44 0.57 75.75

p-value (0.8360) (0.6842) (0.7958) (0.3790) (0.2581) (0.1453) (0.9470)
cNrGA/CM/R 6855.25 202.82 331.70 548.22 501.59 611.72 994.23

SD 1250.09 0.29 0.50 23.86 0.45 0.67 75.50
p-value (0.8245) (0.7787) (0.4119) (0.6414) (0.1624) (0.1907) (0.9587)

8E+04

cNrGA 5882.96 202.75 331.69 543.84 501.42 611.47 1018.14
SD 1716.14 0.31 0.70 34.25 0.35 0.71 93.20

cNrGA/CM/LRU 6356.92 202.74 331.64 547.56 501.39 611.46 1018.78
SD 1511.99 0.32 0.48 30.60 0.30 0.68 92.66

p-value (0.3255) (0.8302) (0.8766) (0.3711) (0.8883) (0.8650) (0.5692)
cNrGA/CM/R 6053.14 202.73 331.59 545.11 501.38 611.41 1020.13

SD 1668.68 0.31 0.49 31.96 0.39 0.68 91.73
p-value (0.6361) (0.7116) (0.7283) (0.7506) (0.6952) (0.8650) (0.4918)

9E+04

cNrGA 5863.06 202.72 331.60 545.18 501.34 611.52 980.99
SD 1613.16 0.32 0.77 32.07 0.47 0.70 74.17

cNrGA/CM/LRU 6195.90 202.75 331.45 542.52 501.28 611.62 979.64
SD 1530.38 0.37 0.55 26.00 0.41 0.69 73.01

p-value (0.5298) (0.8015) (0.3183) (0.8650) (0.7283) (0.5395) (0.7172)
cNrGA/CM/R 6131.57 202.75 331.57 541.40 501.33 611.54 981.55

SD 1514.18 0.33 0.67 24.28 0.39 0.54 73.71
p-value (0.5642) (0.7449) (0.9941) (0.9117) (0.8883) (0.9941) (0.4464)

1E+05

cNrGA 6096.50 202.73 331.34 525.57 501.34 611.72 1010.46
SD 1512.14 0.27 0.46 23.85 0.41 0.62 78.14

cNrGA/CM/LRU 5554.30 202.77 331.43 532.48 501.31 611.55 1013.48
SD 1674.53 0.28 0.66 18.89 0.37 0.61 79.36

p-value (0.2643) (0.5893) (0.8650) (0.1907) (0.9352) (0.3953) (0.9352)
cNrGA/CM/R 5663.53 202.71 331.49 528.56 501.26 611.50 1010.98

SD 1653.66 0.32 0.43 19.85 0.31 0.69 78.51
p-value (0.3219) (0.8824) (0.1055) (0.3871) (0.5011) (0.1907) (0.4643)

123

Author's personal copy

206 Memetic Comp. (2016) 8:189–210

Table 8 Performance
comparison of cNrGA,
cNrGA/CM/LRU and
cNrGA/CM/R. The best mean
fitness values over three
algorithms are shaded in grey.
† means cNrGA is significantly
superior to its variant with
constant memory, while ‡ means
cNrGA is significantly inferior

f22 f23 f24 f25 f26 f27 f28

1E+04

cNrGA 1242.49 9220.74 1270.26 1389.21 1464.95 2362.81 2578.22
SD 125.46 396.17 8.85 7.40 74.65 118.72 172.39

cNrGA/CM/LRU 1242.49 9220.74 1270.26 1389.21 1464.95 2362.81 2578.22
SD 125.46 396.17 8.85 7.40 74.65 118.72 172.39

cNrGA/CM/R 1242.49 9220.74 1270.26 1389.21 1464.95 2362.81 2578.22
SD 125.46 396.17 8.85 7.40 74.65 118.72 172.39

2E+04

cNrGA 979.70 8787.41 1265.08 1385.85 1474.58 2259.81 2135.26
SD 27.91 470.44 8.68 5.90 75.41 100.12 333.66

cNrGA/CM/LRU 978.12 8769.79 1265.18 1385.50 1475.75 2256.76 2172.97
SD 19.31 473.13 8.78 5.88 75.67 98.19 336.24

p-value (0.7845) (0.9058) (0.9941) (0.9352) (0.8130) (0.9352) (0.4643)
cNrGA/CM/R 976.03 8813.54 1265.82 1385.88 1474.90 2254.65 2140.94

SD 15.25 459.01 8.76 5.33 75.46 112.01 305.74
p-value (0.9234) (0.8015) (0.6735) (0.9234) (0.9058) (0.6952) (0.7506)

3E+04

cNrGA 942.78 8346.75 1266.95 1383.01 1475.36 2211.67 1950.22
SD 29.78 797.79 10.16 6.49 79.74 77.19 366.48

cNrGA/CM/LRU 943.27 8124.01 1267.20 1382.65 1467.33 2218.92 1953.42
SD 31.50 1105.81 10.42 6.50 79.45 92.91 345.53

p-value (0.6735) (0.5443) (0.9352) (0.8073) (0.8650) (0.8650) (0.7958)
cNrGA/CM/R 942.67 8481.45 1266.82 1383.26 1475.34 2220.07 1952.08

SD 31.67 498.37 9.92 6.50 79.80 85.08 327.63
p-value (0.8534) (0.9117) (0.9234) (0.8073) (0.9646) (0.7172) (0.5493)

4E+04

cNrGA 933.53 7978.01 1263.20 1383.20 1443.64 2256.42 1784.59
SD 20.47 1286.58 9.80 7.24 70.41 65.73 165.61

cNrGA/CM/LRU 931.12 8137.84 1263.25 1382.98 1443.70 2250.57 1823.45
SD 28.27 1059.05 8.66 7.41 70.59 73.28 238.04

p-value (0.8418) (0.9411) (0.9587) (0.9000) (0.9941) (0.7731) (0.9823)
cNrGA/CM/R 928.81 7973.34 1263.09 1383.24 1444.21 2259.42 1787.18

SD 29.03 1078.89 9.22 7.49 71.41 64.81 150.52
p-value (0.2772) (0.5106) (0.8534) (0.8650) (0.9234) (0.9234) (0.4918)

5E+04

cNrGA 924.27 7737.93 1263.48 1380.31 1447.88 2239.04 1816.23
SD 28.96 1027.08 7.00 5.94 71.85 75.35 323.03

cNrGA/CM/LRU 923.93 7538.69 1263.90 1379.95 1447.87 2222.40 1811.65
SD 27.90 1220.18 6.99 6.73 71.94 59.99 323.32

p-value (0.7506) (0.5642) (0.9000) (0.8883) (1.0000) (0.3255) (0.5298)
cNrGA/CM/R 927.06 7911.40 1264.19 1380.54 1448.07 2235.13 1864.60

SD 27.34 1104.80 7.05 6.30 72.16 66.59 372.91
p-value (0.2116) (0.2804) (0.7172) (0.7958) (0.9058) (0.6627) (0.9234)

6E+04

cNrGA 926.22 7403.49 1262.66 1382.19 1457.64 2228.86 1783.00
SD 22.14 1298.15 8.99 6.55 75.06 83.78 247.11

cNrGA/CM/LRU 926.18 6623.89 1262.14 1382.09 1457.16 2227.23 1790.88
SD 21.64 1708.82 9.08 6.44 74.68 80.09 275.33

p-value (0.8883) (0.1039) (0.8073) (0.9470) (0.8592) (0.9705) (0.5106)
cNrGA/CM/R 926.10 6860.50 1261.85 1382.20 1457.87 2215.42 1764.05

SD 18.91 1626.94 8.86 6.44 75.19 87.63 233.18
p-value (0.6100) (0.1737) (0.5895) (0.9352) (0.9176) (0.6309) (0.8303)

7E+04

cNrGA 916.72 6784.56 1264.46 1384.08 1448.44 2259.86 1743.57
SD 33.52 1543.71 7.44 8.45 73.43 83.56 148.82

cNrGA/CM/LRU 920.29 6162.81 1264.52 1383.92 1448.51 2252.91 1740.40
SD 41.03 1840.78 7.27 7.90 73.51 88.21 145.00

p-value (0.8073) (0.2612) (0.8766) (0.8883) (0.9941) (0.7062) (0.5997)
cNrGA/CM/R 919.92 6297.60 1264.66 1384.17 1448.52 2258.86 1760.84

SD 45.70 1619.75 7.38 8.05 73.50 83.34 178.76
p-value (0.4733) (0.2311) (0.9117) (0.9705) (0.8073) (0.9470) (0.8883)

8E+04

cNrGA 911.57 6218.06 1265.20 1381.94 1475.53 2213.64 1771.82
SD 26.20 1785.58 7.66 6.19 81.02 88.80 229.64

cNrGA/CM/LRU 913.22 6047.19 1264.87 1382.21 1475.60 2208.53 1750.25
SD 29.77 1679.74 8.45 6.35 81.01 89.14 192.02

p-value (0.5298) (0.7283) (0.9823) (0.8766) (0.9470) (0.9000) (0.1907)
cNrGA/CM/R 916.01 6059.08 1264.46 1381.85 1476.09 2214.68 1713.86

SD 35.79 1876.48 8.24 6.51 81.59 91.12 9.24
p-value (0.8650) (0.8534) (0.7618) (0.9705) (0.8187) (0.9117) (0.1413)

9E+04

cNrGA 917.07 5759.15 1262.37 1382.91 1450.60 2256.58 1755.18
SD 27.31 1585.09 8.21 6.58 73.10 97.88 233.16

cNrGA/CM/LRU 918.01 5526.98 1262.22 1382.71 1445.06 2261.47 1784.73
SD 30.40 1512.44 8.50 6.86 70.23 99.47 274.89

p-value (0.9823) (0.6100) (0.9587) (0.9587) (0.8016) (0.8534) (0.3255)
cNrGA/CM/R 917.93 5541.16 1262.68 1382.49 1445.07 2251.66 1797.95

SD 28.99 1387.49 8.40 6.25 70.01 100.72 275.20
p-value (0.9587) (0.6843) (0.8534) (0.7958) (0.7227) (0.8883) (0.6100)

1E+05

cNrGA 915.51 4620.27 1263.72 1383.17 1458.02 2224.21 1804.87
SD 30.47 868.03 8.92 6.30 76.76 87.34 314.38

cNrGA/CM/LRU 917.12 4786.66 1263.07 1383.41 1458.48 2216.35 1799.51
SD 26.57 1030.02 8.85 7.08 77.40 84.71 286.56

p-value (0.1958) (0.6843) (0.6952) (0.7845) (0.7958) (0.6414) (0.0421)‡
cNrGA/CM/R 915.21 5439.27 1264.18 1382.65 1458.57 2237.45 1813.62

SD 27.97 1249.86 8.86 7.08 77.39 79.74 326.80
p-value (0.6309) (0.0144)† (0.9117) (0.6735) (0.6309) (0.6520) (0.0905)

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 207

Table 9 Mean results (mean)
and standard deviation (SD) of
cNrGA/CM/LRU
cNrGA/CM/R, real-coded GA
and SPSO 2011

cNrGA cNrGA/
CM/ LRU

cNrGA/
CM/R

RGA SPSO
2011

f1

Mean −1399.87 −1399.83 −1399.95 −1397.75 −1400

SD 0.25 0.69 0.1 2.01 0

f2

Mean 2.00E+07 2.00E+07 2.02E+07 2.83E+07 4.76E+05

SD 7.57E+06 7.46E+06 7.37E+06 8.58E+06 2.00E+05

f3

Mean 8.82E+08 1.07E+09 1.13E+09 1.81E+09 1.71E+08

SD 8.12E+08 8.30E+08 1.01E+09 1.77E+09 2.22E+08

f4

Mean 4.41E+04 4.25E+04 4.07E+04 2.86E+04 1.63E+04

SD 10371.83 7894.01 8997.42 8106.26 5375.7

f5

Mean −999.83 −999.85 −999.93 −997.04 −1000

SD 0.55 0.38 0.17 0.84 0

f6

Mean −849.6 −848.81 −849.51 −827.98 −857.66

SD 23.95 24.85 23.82 32.16 29.45

f7

Mean −724.57 −724.38 −724.1 −706.11 −726.91

SD 12.68 13.18 13.08 34.08 23.18

f8

Mean −679.03 −679.02 −679.02 −679 −679.05

SD 0.06 0.07 0.07 0.09 0.06

f9

Mean −571.93 −570.88 −571.39 −569.79 −575.23

SD 3.17 3.93 3.03 4.39 4.64

f10

Mean −494.39 −494.49 −494.16 −463.27 −499.73

SD 2.3 2 2.51 10.08 0.15

f11

Mean −398.4 −398.77 −398.6 −385.02 −287.17

SD 1.55 1.31 1.37 3.56 39.06

f12

Mean −245.72 −245.41 −246.93 −172.89 −199.27

SD 14.81 15.56 13.83 23.63 29.2

f13

Mean −87.57 −91.53 −88.81 −36.7 −33.31

SD 21.27 19.68 21.94 29.2 36.17

f14

Mean −95.68 −96.62 −97.64 1032.17 5250.77

SD 4.61 2.35 1.77 297.7 885.49

123

Author's personal copy

208 Memetic Comp. (2016) 8:189–210

Table 9 continued
cNrGA cNrGA/

CM/ LRU
cNrGA/
CM/R

RGA SPSO
2011

f15

Mean 6096.5 5554.3 5663.53 5683 6003.29

SD 1512.14 1674.53 1653.66 620.64 704.74

f16

Mean 202.73 202.77 202.71 202.6 202.29

SD 0.27 0.28 0.32 0.53 0.33

f17

Mean 331.34 331.43 331.49 355.17 476.01

SD 0.46 0.66 0.43 5.99 37.81

f18

Mean 525.57 532.48 528.56 632.8 599.11

SD 23.85 18.89 19.85 21.38 19.25

f19

Mean 501.34 501.31 501.26 505.99 511.12

SD 0.41 0.37 0.31 1.55 5.36

f20

Mean 611.72 611.55 611.5 613.28 614.21

SD 0.62 0.61 0.69 0.86 1.35

f21

Mean 1010.46 1013.48 1010.98 1044.9 1007.85

SD 78.14 79.36 78.51 63.44 115.1

f22

Mean 915.51 917.12 915.21 1915.99 5879.36

SD 30.47 26.57 27.97 318.26 947.74

f23

Mean 4620.27 4786.66 5439.27 7180.95 7118.24

SD 868.03 1030.02 1249.86 958.14 1084.37

f24

Mean 1263.72 1263.07 1264.18 1256.46 1269.73

SD 8.92 8.85 8.86 10.61 12.67

f25

Mean 1383.17 1383.41 1382.65 1388.07 1388.44

SD 6.3 7.08 7.08 13.24 9.39

f26

Mean 1458.02 1458.48 1458.57 1479.53 1488.28

SD 76.76 77.4 77.39 85.38 78.68

f27

Mean 2224.21 2216.35 2237.45 2268.23 2202.28

SD 87.34 84.71 79.74 112.52 67.11

f28

Mean 1804.87 1799.51 1813.62 1825.81 1961.9

SD 314.38 286.56 326.8 37.76 758.68

123

Author's personal copy

Memetic Comp. (2016) 8:189–210 209

Table 10 Significance tests of the three variants of cNrGA vs. real-
coded GA and SPSO 2011 [+ means cNrGA (or its variant) is
significantly superior, while − means significantly inferior]

cNrGA cNrGA/CM/LRU cNrGA/CM/R

RGA SPSO 2011 RGA SPSO 2011 RGA SPSO 2011

f1 + − + − + −
f2 + − + − + −
f3 + − + − + −
f4 + − + − − −
f5 + − + − + −
f6 + 0 + 0 + 0

f7 + 0 + 0 + 0

f8 0 0 0 0 0 0

f9 0 − 0 − 0 −
f10 + − + − + −
f11 + + + + + +

f12 + + + + + +

f13 + + + + + +

f14 + + + + + +

f15 0 0 0 0 0 0

f16 0 − 0 − 0 −
f17 + + + + + +

f18 + + + + + +

f19 + + + + + +

f20 + + + + + +

f21 + − + − + −
f22 + + + + + +

f23 + + + + + +

f24 + + + + − 0

f25 0 + 0 0 0 +

f26 + 0 + 0 + 0

f27 0 0 0 0 0 0

f28 + + + + + +

Superior 22 13 22 12 20 12

Inferior 0 9 0 9 2 9

References

1. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

2. Davis L (ed) (1991) Handbook of genetic algorithms, vol 115. Van
Nostrand Reinhold, New York

3. Friedrich T, Hebbinghaus N, Neumann F (2007) Rigorous analyses
of simple diversity mechanisms. In: Proceedings of the 9th annual
conference on genetic and evolutionary computation (GECCO).
ACM, New York, pp 1219–1225

4. Ronald S (1998) Duplicate genotypes in a genetic algorithm. In:
Proceedings of the IEEE world congress on computational intelli-
gence (WCCI), pp 793–798

5. Povinelli RJ, Feng X (1999) Improving genetic algorithms perfor-
mance by hashing fitness values. In: Proceedings of the artificial
neural networks in engineering (ANNIE), pp 399–404

6. Kratica J (1999) Improving performances of the genetic algorithm
by caching. Comput Artif Intell 18(3):271–283

7. Yuen SY, Chow CK (2009) A genetic algorithm that adaptively
mutates and never revisits. IEEE Trans Evol Comput 13(2):454–
472

8. Glover F, Laguna M (1997) Tabu search. Kluwer, Norwell
9. Chow CK, Yuen SY (2010) Continuous non-revisiting genetic algo-

rithm with random search space re-partitioning and one-gene-flip
mutation. In: Proceedings of the IEEE congress on evolutionary
computation (CEC) , Barcelona. doi:10.1109/CEC.2012.6252926

10. Chow CK, Yuen SY (2012) Continuous Non-revisiting Genetic
Algorithm with Overlapped Search Sub-region. In Proceedings of
the IEEE congress on evolutionary computation (CEC), Brisbane,
QLD, p 1–8. doi:10.1109/CEC.2010.5586046

11. Yuen SY, Chow CK (2008) A non-revisiting simulated annealing
algorithm. In: Proceedings of the IEEE congress on evolutionary
computation (CEC), pp 1886–1892

12. Chow CK, Yuen SY (2008) A non-revisiting particle swarm opti-
mization. In: Proceedings of the IEEE congress on evolutionary
computation (CEC), pp 1879–1885

13. Du J, Rada R (2012) Memetic algorithms, domain knowledge, and
financial investing. Memet Comput 4(2):109–125

14. Young CN, LeBrese C, Zou JJ, Leo CJ (2013) A robust search
paradigm with enhanced vine creeping optimization. Eng Optim
45(2):225–244

15. Akay B, Karaboga D (2012) A modified artificial bee colony algo-
rithm for real-parameter optimization. Inf Sci 192:120–142

16. Jadon SS, Bansal JC, Tiwari R, Sharma H (2015) Accelerating
artificial bee colony algorithm with adaptive local search. Memet
Comput 7(3):215–230

17. Gandomi AH, Yang XS (2012) Evolutionary boundary constraint
handling scheme. Neural Comput Appl 21:1449–1462

18. Wang Y, Li HX, Huang T, Li L (2014) Differential evolution based
on covariance matrix learning and bimodal distribution parameter
setting. Appl Soft Comput 18:232–247

19. Wang Y, Wang BC, Li HX, Yen GG (2015) Incorporating objec-
tive function information into the feasibility rule for constrained
evolutionary optimization. IEEE Trans Cybern (in press). doi:10.
1109/TCYB.2015.2493239

20. Chu W, Gao X, Sorooshian S (2011) Handling boundary constraints
for particle swarm optimization in high-dimensional search space.
Inf Sci 181:4569–4581

21. Zambrano-Bigiarini M, Clerc M, Rojas R (2013) Standard particle
swarm optimisation 2011 at CEC-2013: a baseline for future PSO
improvements. In: Proceedings of the IEEE congress on evolution-
ary computation (CEC), pp 2337–2344

22. Hansen N (2006) The CMA evolution strategy: a comparing review.
In: Proceedings on towards a new evolutionary computation, pp
75–102

23. Hansen N (2011) The CMA evolutionary strategy: a tutorial.
In: Technical report. http://www.lri.fr/~hansen/cmatutorial.pdf.
Accessed 14 June 2015

24. Mack CA (2011) Fifty years of Moore’s law. IEEE Trans Semicond
Manuf 24(2):202–207

25. Lou Y, Yuen SY (2015) Non-revisiting genetic algorithm with con-
stant memory. In: Proceedings of the IEEE systems, man, and
cybernetics (SMC), pp 1714–1719

26. Eshelman LJ, Schaffer JD (1992) Real-coded genetic algorithms
and interval-schemata. In: Proceedings of the international confer-
ence on genetic algorithms (ICGA), pp 187–202

27. Lihu A, Holban S, Popescu O-A (2012) Real-valued genetic algo-
rithms with disagreements. Memet Comput 4(4):317–325

28. Heris SMK (2015) Implementation of real-coded genetic algorithm
in MATLAB. http://www.yarpiz.com. Accessed 23 Aug 2015

123

Author's personal copy

http://dx.doi.org/10.1109/CEC.2012.6252926
http://dx.doi.org/10.1109/CEC.2010.5586046
http://dx.doi.org/10.1109/TCYB.2015.2493239
http://dx.doi.org/10.1109/TCYB.2015.2493239
http://www.lri.fr/~hansen/cmatutorial.pdf
http://www.yarpiz.com

210 Memetic Comp. (2016) 8:189–210

29. Chow CK, Yuen SY (2011) An evolutionary algorithm that makes
decision based on the entire previous search history. IEEE Trans
Evol Comput 15(6):741–769

30. Leung SW, Yuen SY, Chow CK (2012) Parameter control system
of evolutionary algorithm that is aided by the entire search history.
Appl Soft Comput 12(9):3063–3078

31. www.ee.cityu.edu.hk/~syyuen/Public/Code.html. Accessed 28
Dec 2015

32. Liang JJ, Qu B-Y, Suganthan PN, Hernández-Díaz AG (2013)
Problem definitions and evaluation criteria for the CEC 2013
special session and competition on real-parameter optimization.
In: Technical report 2012, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou and technical report, Nanyang
Technological University, Singapore

33. Karafotias G, Hoogendoorn M, Eiben AE (2014) Parameter control
in evolutionary algorithms: trends and challenges. IEEE Trans Evol
Comput 19(2):167–187

34. Sedgewick R (2002) Algorithms in Java, parts 1–4. Addison-
Wesley, Boston

35. Knuth DE (1998) The art of computer programming: sorting and
searching. Pearson Education, London

123

Author's personal copy

www.ee.cityu.edu.hk/~syyuen/Public/Code.html

	Non-revisiting genetic algorithm with adaptive mutation using constant memory
	Abstract
	1 Introduction
	2 Continuous non-revisiting genetic algorithm
	3 Memory management strategies
	3.1 Two pruning mechanisms
	3.1.1 The least recently used (LRU) pruning
	3.1.2 The random (R) pruning

	3.2 Novel parameter-less adaptive mutation operators

	4 Experimental studies
	4.1 Test settings
	4.2 Results
	4.2.1 Significance tests of the three algorithms
	4.2.2 Comparison with RGA and SPSO 2011

	4.3 Adaptive mutation
	4.4 Running time
	4.5 The to-prune-list

	5 Conclusions
	Acknowledgments
	Appendix
	References

